PRINTED IN DENMARK

Acta Cryst. (1969). B25, 1001

Crystal data of two high pressure phases of SrB₂O₄. By P. D. Dernier, Bell Telephone Laboratories, Inc., Murray Hill, New Jersey, U.S.A.

(Received 8 October 1968)

SrB₂O₄(III) and SrB₂O₄(IV) are two high pressure phases of strontium metaborate. Polycrystalline SrB₂O₄(III) was prepared at 15 kbar and 600 °C. It is orthorhombic, with $a=12\cdot426\pm0\cdot002$, $b=6\cdot418\pm0\cdot001$ and $c=11\cdot412\pm0\cdot002$ Å, Z=12, $d_c=3\cdot77$ g.cm⁻³, symmetry $Pna2_1$, and is isostructural with CaB₂O₄(III). SrB₂O₄(IV), formed at 20 kbar and 600 °C, is cubic, with $a=9\cdot222\pm0\cdot001$ Å, Z=12, $d_c=4\cdot38$ g.cm⁻³, space group symmetry Pa3, and is isostructural with CaB₂O₄(IV). In general the behavior of SrB₂O₄ under pressure is very similar to that of CaB₂O₄.

Introduction

This paper reports the synthesis and crystal data of two new high pressure phases of strontium metaborate. At atmospheric pressure SrB_2O_4 is isostructural with $CaB_2O_4(I)$ (Block, Perloff & Weir, 1964). The latter compound is orthorhombic with all boron atoms triangularly coordinated and the calcium atoms surrounded by eight-oxygen polyhedra. Since the polymorphism of SrB_2O_4 is similar to that of CaB_2O_4 , all modifications of SrB_2O_4 will be designated in the same fashion as their isostructural CaB_2O_4 counterparts. (Marezio, Remeika, & Dernier, 1969a).

Synthesis

The high pressure apparatus and experimental procedures were the same as has been previously described in the synthesis of the high pressure modifications of CaB₂O₄ (Marezio *et al.* 1969 *a, b*). However, the pressure and temperature conditions were significantly lower for each of the respective high pressure phases of SrB₂O₄. SrB₂O₄(III) was retained metastably after pressurizing SrB₂O₄(I) to 15 kbar and raising the temperature to 600°C for a one hour period. The synthesis of SrB₂O₄(IV) required a pressure of 20 kbar and a temperature of 600°C. Further increases of pressure above 40 kbar resulted in the decomposition of SrB₂O₄. One product of decomposition was

found to be SrB_4O_7 (Krogh-Moe, 1964), as identified by X-ray powder photographs and precession films.

Both SrB₂O₄(III) and SrB₂O₄(IV) could be reconverted to the low pressure starting material, SrB₂O₄(I), by annealing overnight at 750°C in air. X-ray powder films of the annealed SrB₂O₄ and unpressurized SrB₂O₄ were identical. In addition, single crystals of both high pressure modifications were grown at a pressure of 15 kbar and a temperature of 600°C with water as a solvent. The crystals were easily identified and separated under a crossed polarized field of light, since the crystals of SrB₂O₄(III) were birefringent whereas those of SrB₂O₄(IV) were isotropic. It should be noted that the presence of water apparently lowered the pressure range of stability of SrB₂O₄(IV). This phenomenon has been observed previously for several other systems but no *a priori* justification can be proposed at this time.

Crystal data

From precession photographs taken with Mo $K\alpha$ radiation $SrB_2O_4(III)$ was found to be orthorhombic with systematic absences for 0kl, k+l=2n+1, and for h0l, h=2n+1. These are identical with the conditions found for $CaB_2O_4(III)$ (Marezio, Remeika & Dernier, 1969a). The correct space group for $CaB_2O_4(III)$ was found to be $Pna2_1$ and it is highly probable that it is the same for $SrB_2O_4(III)$. The lattice parameters for $SrB_2O_4(III)$ were

690216

determined from a powder film taken at room temperature and atmospheric pressure with a Norelco Camera of 114.6 cm diameter and Cr $K\alpha$ (2·2909 Å) radiation. The parameters were refined by the least-squares program of Mueller, Heaton & Miller (1960). The final refined parameters are $a=12\cdot426\pm0\cdot002$, $b=6\cdot418\pm0\cdot001$ and $c=11\cdot412\pm0\cdot002$ Å. The calculated density based on 12 molecules per unit cell is $3\cdot77$ g.cm⁻³. A comparison of observed and calculated interplanar spacings is given in Table 1.

Table 1. Powder pattern of SrB₂O₄(III)

hkl	d_{obs}	d_{cale}	I
202			m
211	4.177	4.202	m
212	3.509	3.516	m
311	3.325	3.329	
113	3.163	3.164	m
	3.103		m
120 400	3.092	3.107	m
121		2.998	
401	2.997		S
	2.849	2·997 2·853	****
004		2.593	ms
204	2.587		m
114	2.548	2.551	m
412	2.509	2.511	m
214	2.401	2.404	w
322	2.323	§ 2·318	w
510		2.318	
205	2.140	2.142	m
115	2.116	2.119	w
404	2.089	$\begin{cases} 2.101 \\ 2.101 \end{cases}$	w
124	2 007		
131	2.064	§ 2·073	W
600		2.071	
224	2.005	2.017	m
231	1.992	{ 1.992 1.997	m
414			
513	1.975	1.979	m
610	1.967	1.971	m
611	1.938	1.942	w
006	1.898	1.902	ms
331	1.876	1.875	w
133	1.843	1.844	m
206	1.816	1.819	w
514	1.796	1.799	w
613	1.749	J 1.750	w
216		1.750	
710	1.708	1.711	w
026	1.636	1.636	w
326	1.521	1.522	w
810	1.508	1.509	w
606	1.400	1.400	wm
517	1.333	1.333	wm
805	1.284	1.284	m
726	1.203	1.203	m
825	1.192	1.192	m
346	1.176	1.176	m

A powder film of $SrB_2O_4(IV)$ taken with $Cu\ K\alpha$ (1.5418 Å) radiation at room temperature and atmospheric pressure, was indexed on a cubic cell with a lattice parameter of approximately 9.2 Å. From a comparison with a powder film of the cubic phase $CaB_2O_4(IV)$ (Marezio, Remeika & Dernier 1969b) it appears that $SrB_2O_4(IV)$ is isostructural with $CaB_2O_4(IV)$. The powder data of the former compound are given in Table 2. The final refined lattice parameter for $SrB_2O_4(IV)$ was $a=9.222\pm0.001$ Å, as obtained by the previously mentioned least-squares program. The calcu-

lated density based on 12 molecules per unit cell is 4.38 g.cm^{-3} .

Table 2. Powder pattern of SrB2O4(IV)

$h^2 + k^2 + l^2$	d_{obs}	d_{cale}	I
5	4.118	4.124	m
6	3.747	3.765	wm
8	3.249	3.261	w
9	3.074	3.074	w
11	2.774	2.781	S
12 13	2·658 2·552	2·662 2·558	vw
14	2.457	2.465	m
16	2.296	2.306	w
17	2.226	2.236	w
18			
19			
20	2.056	2.062	m
21	2.009	2.012	ms
22 24	1·959 1·877	1·966 1·882	m
27	1.771	1.775	m
29	1.709	1.713	wm
30	1.680	1.684	m
32	1.628	1.630	m
33			
34	1.579	1.581	w
35	1 525	DOT ASSET OF	
36 38	1.535	1.537	wm
40	1·494 1·456	1·496 1·458	m
43	1.404	1.406	n w
44	1.389	1.390	vw
45	1.373	1.375	m
46	1.359	1.360	m
48	r Pillia kenn		
53	1.266	1.267	m
54	1.253	1.255	m
56 57	1.230	1.232	m
59	1.199	1.201	ms
61	1.179	1.181	wm
62	1.170	1.171	wm
64	1.152	1.153	w
69	1.108	1.110	w
70	1.101	1.102	w
75 77	1·064 1·050	1·065 1·051	m
78	1.043	1.044	w
84	1.006	1.006	w
85	1.000	1.000	w
86	0.9933	0.9944	wm
91	0.9662	0.9667	w
94	0.9502	0.9512	w
96	0.9404	0.9412	m
101 104	0·9167 0·9036	0·9176 0·9043	m
107	0.8911	0.8915	m
109	0.8827	0.8833	w
110	0.8786	0.8793	m
116	0.8556	0.8562	w
117	0.8519	0.8526	w
118	0.8484	0.8490	w
123	0.8312	0.8315	m
125	0.8245	0.8249	m
126 128	0·8212 0·8148	0·8216 0·8151	m
133	0.7995	0.8151	w
134	0.7964	0.7967	m
136	0.7906	0.7908	vw
139	0.7821	0.7822	m
141	0.7766	0.7766	m